An Uncertainty Quantification Framework for Prognostics and Condition-Based Monitoring

نویسندگان

  • Shankar Sankararaman
  • Kai Goebel
چکیده

This paper presents a computational framework for uncertainty quantification in prognostics in the context of condition-based monitoring of aerospace systems. The different sources of uncertainty and the various uncertainty quantification activities in conditionbased prognostics are outlined in detail, and it is demonstrated that the Bayesian subjective approach is suitable for interpreting uncertainty in online monitoring. A state-space model-based framework for prognostics, that can rigorously account for the various sources of uncertainty, is presented. Prognostics consists of two important steps. First, the state of the system is estimated using Bayesian tracking, and then, the future states of the system are predicted until failure, thereby computing the remaining useful life of the system. The proposed framework is illustrated using the power system of a planetary rover test-bed, which is being developed and studied at NASA Ames Research Center.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncertainty in Prognostics and Systems Health Management

This paper presents an overview of various aspects of uncertainty quantification and management in prognostics and systems health management. Prognostics deals with predicting possible future failures in different types of engineering systems. It is almost practically impossible to precisely predict future events; therefore, it is necessary to account for the different sources of uncertainty th...

متن کامل

Uncertainty in Prognostics and Health Management: An Overview

This paper presents an overview of various aspects of uncertainty quantification in prognostics and health management. Since prognostics deals with predicting the future behavior of engineering systems and it is almost practically impossible to precisely predict future events, it is necessary to account for the different sources of uncertainty that affect prognostics, and develop a systematic f...

متن کامل

A stochastic collocation approach for efficient integrated gear health prognosis

Uncertainty quantification in damage growth is critical in equipment health prognosis and condition based maintenance. Integrated health prognostics has recently drawn growing attention due to its capability to produce more accurate predictions through integrating physical models and real-time condition monitoring data. In the existing literature, simulation is commonly used to account for the ...

متن کامل

Challenges in Concrete Structures Health Monitoring

Structural health monitoring needs to produce actionable information regarding structural integrity that supports operational and maintenance decision making that is individualized for a given structure and its performance objectives. An effective Prognostics and Health Management (PHM) framework for aging structures (subjected to physical, chemical, environmental, and mechanical degradation) n...

متن کامل

Integrated Equipment Health Prognosis Considering Crack Initiation Time Uncertainty and Random Shock

With integrated equipment health prognosis, both physical models and condition monitoring data are utilized to achieve more accurate prediction of equipment remaining useful life (RUL). In this paper, an integrated prognostics method is proposed to account for two important factors which were not considered before, the uncertainty in crack initiation time (CIT) and the shock in the degradation....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013